

2017 Fork Lake Water Quality Report Lac La Biche County, Alberta

Prepared by:

Lac La Biche County 13422 - Hwy 881, Lac La Biche, Alberta, Canada

October 15, 2018

Adapted from: EnviroLead Canada W W W.E N V I R O L E A D.C A

Executive Summary

Fork Lake is relatively smaller, but a scenic fork-shaped lake located within Lac La Biche County, Alberta ("County"), and is known for a variety of recreational activities such as swimming and boating. Therefore, it is important that the lake water quality be monitored.

The County follows a regular program to monitor water quality of lakes located within its jurisdiction. As part of this program, Envirolead Canada Ltd. ("Envirolead") has completed this 2017 Water Quality Report for the Fork Lake under the authorization of the County. The data to complete this report was collected and provided to Envirolead by Lac La Biche County.

The water sampling events were conducted during the early spring and summer of 2017. The data provided includes water temperature, pH, specific conductivity, and dissolved oxygen which was collected in-situ through a multi-probe; and laboratory analytical data of nitrogenous compounds, heavy metals, and other inorganic parameters from ALS Environmental laboratory. Water samples for microbial parameters were analyzed by PROVLAB of Alberta Health Services.

Collected water samples were analyzed by ALS laboratory. The laboratory results obtained were compared to the CCME Canadian Environmental Quality Guidelines for Protection of Aquatic Life and Protection of Agricultural Water; and Alberta Environment and Parks' Environmental Quality Guidelines for Alberta Surface Waters 2018.

Trophic State Index (TSI) is a classification system designed to rate lakes based on the amount of biological activity they sustain. The concentrations of nutrients (nitrogen and phosphorous) are the primary determinants of TSI. Increased concentrations of nutrients tend to result in increased plant growth, followed by an increase in subsequent trophic level. Nurnberg (1996) used parameters including Secchi depth, chlorophyll, total nitrogen and total phosphorus concentrations in lake waters to determine the trophic state of the lakes, which is provided as Table 1 in Appendix A. TSI is a useful tool for evaluation and management of lake health and setting objectives including sport and recreational activities related to the lake. Trophic classification of Fork Lake based on Secchi depth and nutrients is presented in Table 2.

For the purpose of this report, the parameters used to determine the trophic state will only include Secchi depth, total nitrogen and total phosphorus. Chlorophyll will not be used to determine the trophic state. Chlorophyll is a green pigment present in all green plants and is responsible for the absorption of light to provide energy for photosynthesis. It is associated with algae growth in a waterbody and affects the trophic status of a lake. Chlorophyll concentration is measured as part of the County's monitoring program. However, the measurement can be an underestimate of algae biomass when blue-green algae are present. It is also difficult to have consistent measurements of Chlorophyll as there can be large variances in concentrations due to anomalies such as temperature and weather conditions such as precipitation and wind. Therefore, it is difficult to report Chlorophyll concentrations and make recommendations based on the results. Based on this information, Chlorophyll is not reported in this document.

There are four classes of trophic states which include: Oligotrophic which would be the highest quality of water with low productivity, nutrients and algae; Mesotrophic which is fair quality water with some productivity, nutrients and algae; Eutrophic which is relatively poor quality water with high productivity, nutrients and algae; and Hypereutrophic which is the poorest quality water with excessive productivity, nutrients, and algae.

Fork Lake would be considered Eutrophic based on the average of the three water parameters Secchi depth, total nitrogen and total phosphorus. Mesotrophic based on Secchi depth, Hypereutrophic based on total nitrogen, and Eutrophic based on total phosphorus.

Results and Discussion

In 2017, Secchi depths in Fork Lake were measured on July 10, July 26, August 10, and August 24, 2017. The average seasonal Secchi depth was observed to be 1.0 m which is a slight decrease from historical results. The low average Secchi depth means that Fork Lake water has poor transparency due to suspended materials. Based on the Secchi depths and in accordance with the classification provided in Table 1 (Appendix A), Fork Lake is classified as Eutrophic (high productivity, nutrients, and algae growth).

Sampling events in 2017 showed an average water temperature of 19.4 ^oC. Uniform temperature profiles were observed during the summer as there were no significant variation in temperatures with depth. Based on the data provided, thermal stratification was not observed in any of the sampling events between March 8 and August 24, 2017.

Dissolved oxygen data collected in 2017 shows that the average dissolved oxygen levels ranged from 8.10 mg/L to 5.8 mg/L. These concentrations were in proximity to the regulatory criteria for dissolved oxygen in cold water lakes for early life stages (9.5 mg/L) and for all other life stages (6.5 mg/L).

In 2017, two types of lake water samples for analyses of nutrients were collected from Fork Lake; composite samples and Kemmerer samples (obtained from different depths using a Kemmerer device). These samples were analyzed for total nitrogen and total phosphorous.

Total nitrogen concentrations in the composite samples collected from the lake in 2017 had an average of 2.05 mg/L of total nitrogen, while the Kemmerer samples collected had an average of 2.5 mg/L of total nitrogen; both of which exceeded the applicable regulatory guidelines and were consistent with historical results. Total nitrogen concentrations from both sampling methods classify Fork Lake as Hypereutrophic (excessive productivity, nutrients, and algae growth).

Total phosphorus concentrations in the composite samples collected during the summer of 2017 had an average of 0.038 mg/L of total phosphorus, while the Kemmerer samples collected had an average of 0.098 mg/L. The average of both sampling methods is 0.068 mg/L of total phosphorus which does exceed the applicable regulatory guidelines of 0.05 mg/L and is slightly lower than historical results. Total phosphorus concentrations from both sampling methods classify Fork Lake as Eutrophic (high productivity, nutrients, and algae growth).

The average N:P ratios for composite and Kemmerer sampling events were 53:1 and 26:1 which is higher than the Redfield Ratio of 16:1. Therefore, the total phosphorus concentrations are considered low enough for phosphorus to be considered the main nutrient limiting growth in Fork Lake.

Routine water chemistry showed that Fork Lake has an average pH of 8.58 in 2017 which is consistent with historical results.

Concentrations of metals analyzed from the composite and Kemmerer samples taken at a depth of 6 m were generally below detection limits and/or below the applicable regulatory guidelines.

Thermotolerant coliform samples were collected from beaches located at Fork Lake North and Bennett Beach. The results show that no samples of bacteria collected from these beaches exceeded the regulatory results, all samples taken were within the applicable guidelines.

Fork Lake would be considered Eutrophic based on the average of the three water parameters Secchi depth, total nitrogen and total phosphorus. Mesotrophic based on Secchi depth, Hypereutrophic based on total nitrogen, and Eutrophic based on total phosphorus.

Recommendations:

Envirolead recommends that Lac La Biche County continues to monitor the water quality of Fork Lake on a regular basis. Continuous monitoring will help the County to determine how the lake management strategies and policies such as the Riparian Setback Matrix Model are impacting the lake water quality, and what the net effect is on human and environmental health.

Due to the largescale oil and gas exploration and development operations across the County and in its surrounding, the likelihood of petroleum hydrocarbons entering the lake water through various means cannot be ignored. Envirolead recommends that petroleum hydrocarbons dissolved in the lake water should also be included in the monitoring program.

A strategic monitoring plan should be developed by the County to ensure that sampling is carried out in a consistent manner for all lakes that are sampled each year. This would include sampling each lake the same number of times per year with a uniform sampling procedure; and implementing a quality assurance program for both the multi-probe and water chemistry analysis to ensure that data used to evaluate the lake water quality are accurate and reliable. By maintaining consistency in sampling programs, the County will be able to monitor changes occurring in lake water quality, and hence assist the County in developing policies and management practices to ensure the optimum health of the lake.

Nutrient loading is the main source of eutrophication in Fork Lake which is degrading the water quality; leading to algae growth, foul smells and a reduction in water recreation. Therefore, action must be taken to slow down the eutrophication process and improve water quality. Best management practices would include education of the public on appropriate land use including watershed protection and waste and recycling management; restoration and protection of riparian areas (water buffers); and strengthening laws and regulations governing land use such as municipal sewer hookups and protection of environmental reserves.

Table of Contents

Execu	utive Summary	1
List of	f Figures	5
List of	f Tables	5
1.	INTRODUCTION	6
2.	FORK LAKE WATER QUALITY SAMPLING PROGRAM	6
	2.1 Water Quality Parameters	7
3.	REGULATORY FRAMEWORK	8
4.	SAMPLING ANALYSIS AND MONITORING RESULTS	8
	4.1 Secchi Depths	8
	4.2 Dissolved Oxygen	9
	4.3 Temperature	10
	4.4 Nutrients	10
	4.5 Routine Water Chemistry	13
	4.6 Metals	15
	4.7 Coliforms	13
5	HISTORICAL TREND ANALYSIS	14
	5.1 Secchi Depth	14
	5.2 Total Nitrogen	15
	5.3 Total Phosphorus	
6	DISCUSSION	16
7	RECOMMENDATIONS	18
8	REFERENCES	19
APPE	NDIX - A	21

List of Figures

- Figure 1. Location map of Fork Lake
- Figure 2. Secchi depths measured in Fork Lake 2017
- Figure 3. Dissolved oxygen in Fork Lake 2017
- Figure 4. Temperature profile in Fork Lake 2017
- Figure 5. Total nitrogen from composite samples of Fork Lake 2017
- Figure 6. Total nitrogen from Kemmerer samples of Fork Lake 2017
- Figure 7. Total phosphorus from composite samples of Fork Lake 2017
- Figure 8. Total phosphorus from Kemmerer samples of Fork Lake 2017
- Figure 9. Thermotolerant coliform samples from beaches in Fork Lake 2017
- Figure 10. Historical trend for Secchi depth in Fork Lake
- Figure 11. Historical trend of total nitrogen concentrations in in Fork Lake
- Figure 12. Historical trend of total phosphorus concentrations in Fork Lake

List of Tables

- Table 1: Trophic status classification based on lake water parameters (Nurnberg 1996)
- Table 2: Trophic status of Fork Lake based on lake water parameters (Nurnberg 1996)
- Table 3: Average lake water N:P ratios for composite and Kemmerer samples from Fork Lake 2017
- Table 4: Routine water chemistry analysis of Fork Lake 2017
- Table 5 Dissolved metals from composite and Kemmerer samples in Fork Lake 2017
- Table 6: Historical data of routine chemistry and other parameters for Fork Lake
- Table 7: Historical trend of total dissolved metals in Fork Lake

List of Abbreviations Used

CCME: Canadian Council of Ministers of the Environment County: Lac La Biche County Envirolead: Envirolead Canada Ltd. EQGASW-AGW: Environmental Quality Guidelines for Alberta Surface Waters 2018 for protection of Agricultural Water EQGASW-FAL: Environmental Quality Guidelines for Alberta Surface Waters 2018 for protection of Fresh Water Aquatic Life EQGASW-RA: Environmental Quality Guidelines for Alberta Surface Waters 2018 for Recreation and Aesthetics LLB Lake: Lac La Biche Lake QA/QC: Quality Control and Quality Assurance Total N: Total Nitrogen

Total P: Total Phosphorous

TSI: Trophic State Index

1. INTRODUCTION

Under the authorization of Lac La Biche County, Alberta ("County"), Envirolead Canada Ltd. ("Envirolead") has completed this annual 2017 Water Quality Report for Fork Lake based on the data provided by the County. The completion of this report is part of the ongoing water quality monitoring program of lakes within the jurisdiction of the County.

Fork Lake is located in east central Alberta, approximately 185 km northeast of Edmonton and approximately 40 km southeast of town of Lac La Biche. It covers a surface area of 12 km² within the Beaver River Basin. Popular game fish of this lake include Yellow Perch (*Perca flavescens*), Northern Pike (*Esox lucius*), and Lake Whitefish (*Coregonus clupeaformis*).

Figure 1: Location map of Fork Lake

2. FORK LAKE WATER QUALITY SAMPLING PROGRAM

Fork Lake has been sampled since 2005 first by the Alberta Lake Management Society, and then by Lac La Biche County. Fork Lake is sampled for various parameters using different techniques. Vertical profiles were taken using a multi-probe testing different depths (zones) of the lake for dissolved oxygen, pH, conductivity, and temperature. Composite samples are taken from 10 different locations throughout the lake, while Kemmerer sampling is used for discrete depth sampling; both the composite and Kemmerer samples are tested for nutrients such as, phosphorus, nitrogen, ammonia, nitrates, nitrites, and metals. Fork Lake sampling program for 2017 was completed as follows:

- a) Secchi depths were measured on July 10, July 26, August 10, and August 24, 2017 using a Secchi Disc;
- b) Composite samples from the lake were collected on July 10, August 10, and August 21, 2017. Lake water samples were analyzed for nutrients, metals and basic water chemistry parameters by ALS laboratories;

- c) Kemmerer water samples using a Kemmerer device were collected on March 8, 2017 from depths of 3 m, 6 m, and 9 m; and these samples were analyzed for nutrients, metals and basic water chemistry parameters by ALS laboratories.
- d) Fork Lake profiles were recorded for various parameters (pH, temperature, dissolved oxygen) to a maximum depth of 10 m using a multi-probe on March 8, July 10, July 26, August 10, and August 24, 2017.
- e) Monitoring of fecal coliform and Escherichia coliform (E. coli) bacteria was conducted at popular swimming locations through partnership of the County and Alberta Health Services. Microbiological samples during 2017 were collected from Bennett Beach and Fork Lake North beach by County staff and were submitted to PROVLAB of Alberta Health for analysis.

2.1 Water Quality Parameters

Water samples collected during 2017 sampling events of Fork Lake were analyzed for a variety of parameters to characterize the lake water and identify potential issues associated with lake water quality. The water quality parameters measured/analyzed during 2017 are provided in the table below with a brief description.

Water Quality Parameter	Description and Reason for Measuring
Secchi Depth	Secchi depth is a measure of the transparency of water and trophic state of a lake. A Secchi disk is generally a disk of 20 cm diameter with alternating black and white quadrants. It is lowered into the lake water until it can no longer be seen. This depth of disappearance is called the Secchi depth.
Dissolved Oxygen	Dissolved oxygen is required by aquatic plants and animals for respiration. Survival of aquatic life such as fish, generally depends on an adequate amount of dissolved oxygen for respiration. As dissolved oxygen levels in the water drop below 5.0 mg/L, aquatic life is subjected to stress. Oxygen levels that consistently remain below 1-2 mg/L can result in the loss of large populations of fish.
Temperature	Temperature of water affects different physical, biological and chemical characteristics of a lake and determines the behavior of many parameters responsible for water quality. The solubility of oxygen and other gases decrease as temperature increases. An increase in water temperature decreases the concentration of dissolved oxygen required for the survival of aquatic organisms.
Nutrients	Total nitrogen (N) and phosphorus (P) are principal nutrients in lake water and are representative of all forms of N and P present in the water. There are various sources of N and P both natural and anthropogenic. These nutrients are a major cause of eutrophication, decreasing dissolved oxygen concentrations and are detrimental to lake water quality.
Metals	Metals enter the lake waters through natural (geological) and anthropogenic point and non-point sources. Certain metals such as lead and mercury, are toxic to aquatic life and can bio-accumulate in the tissues and organs of aquatic organisms, becoming a part of the food chain. This may lead to loss of aquatic life and further affect human health.

Parameters affecting lake water quality

Thermotolerant coliforms	Thermotolerant coliforms is the group of coliform bacteria also referred to
	as "fecal coliforms" and is an indicator for the sanitary quality of water.
	The term "thermotolerant coliforms" is gaining acceptance over fecal
	coliform. The presence of these microbes indicate contamination from
	excreta of warm-blooded animals including humans, and may pose serious
	and immediate health risks.

3. REGULATORY FRAMEWORK

The protection of water quality in Canadian lakes is a federal, provincial and territorial responsibility. Therefore, lake waters in Alberta are regulated by federal and provincial guidelines and fall under the jurisdiction of Canadian Council of Ministers of the Environment (CCME), Alberta Environment and Parks (AEP), and Health Canada.

The regulatory criteria selection for lake waters in Alberta are subjected to CCME's Canadian Environmental Quality Guidelines (CEQG) and AEP's Environmental Quality Guidelines for Alberta Surface Waters 2018 (EQGASW). Protection of lake water is covered under CCME's CEQG and AEP's EQGASW chapters of water quality guidelines for Protection of Aquatic Life, Protection of Agricultural Water, and protection of Recreation and Aesthetics. In addition, Health Canada's Guidelines for Canadian Recreational Water Quality for protection of lake waters have also been considered.

The analytical and monitoring results obtained for this report were compared to the above-mentioned regulations and are hereinafter referred to as regulatory guidelines or regulatory criteria.

4. SAMPLING ANALYSIS AND MONITORING RESULTS

4.1 Secchi Depths

The Secchi disk is a common method used to measure water clarity. Water clarity of a lake can be influenced by the amount of suspended materials such as phytoplankton, zooplankton, pollen, sediments and dissolved compounds. The Secchi depth multiplied by 2 provides us with the euphotic depth of the lake. The euphotic depth is the maximum depth to which light can penetrate within a lake to facilitate growth.

In 2017, Secchi depths were measured on July 10, July 26, August 10, and August 24, 2017. The data showed Secchi depth recorded was 1 m for all four sampling events as presented in Figure 2. Based on these Secchi depths, Fork Lake is classified as Eutrophic (high productivity, nutrients, and algae) to Hypereutrophic (excessive productivity, nutrients, and algae) in accordance to the Table 1 provided in Appendix A.

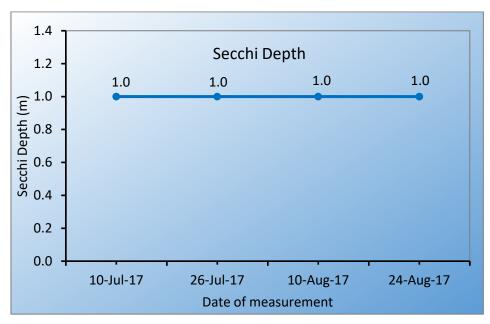


Figure 2: Secchi depths measured in Fork Lake - 2017

4.2 Dissolved Oxygen

Dissolved Oxygen is the amount of gaseous oxygen dissolved in the water and is necessary for respiration and survival of aquatic life (e.g. fish, invertebrates, bacteria, and underwater plants). Dissolved oxygen is also needed for the decomposition of organic matter in the lakes. Oxygen enters the lake water by direct absorption from the atmosphere through rapid movement of water or as a product of plant photosynthesis. Therefore, the epilimnion zone (shallow layer of water) is relatively richer in oxygen than the hypolimnion zone (deeper layer of water) which is low in oxygen due to consumption by respiration.

There are several conditions necessary for fish survival in a lake including adequate water temperatures and available dissolved oxygen for respiration. The regulatory guidelines for dissolved oxygen in cold water lakes are 9.5 mg/L for early life stages and 6.5 mg/L for all other life stages (CCME, 1999). If dissolved oxygen levels are too low, fish will move to other depths in the water column, often where temperatures are conducive to sustain aquatic life.

The amount of dissolved oxygen in lakes usually decreases under winter ice-cover primarily due to respiration by organisms, particularly bacteria. In shallow lakes, oxygen depletion can proceed rapidly under ice during the winter. If dissolved oxygen drops below 3.0 mg/L during the winter, many fish and invertebrate species will not survive.

In 2017, dissolved oxygen levels in Fork Lake were recorded to a maximum depth of 10 m using a multiprobe on March 8, July 10, July 26, August 10, and August 24, 2017. Maximum dissolved oxygen (17.7 mg/L) was observed on March 8, 2017 at 1m depth which declined gradually to 0.5 mg/L at the lake bed (Figure 3).

A gradual downward temporal trend was observed in all dissolved oxygen measurements except the measurements recorded on August 24, 2017. Dissolved oxygen concentration was 7.33 mg/L at 0.5m depth and 7.72 mg/L at 9m depth. The average dissolved oxygen levels ranged from 8.1 mg/L to 5.8 mg/L and were within proximity to the applicable regulatory guidelines for dissolved oxygen in cold water lakes (9.5 mg/L for early life stages and 6.5 mg/L for all other life stages). This low dissolved oxygen at the lake bed means that it is not an ideal environment for most life stages.

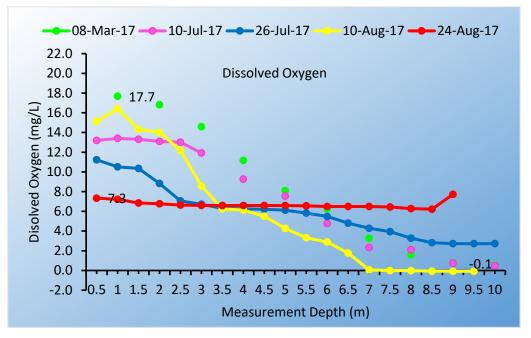


Figure 3: Dissolved oxygen in Fork Lake - 2017

4.3 Temperature

Water temperature in a lake determines the behavior of many parameters responsible for water quality. Thermal stratification occurs within a lake with a distinct difference in temperature between the surface water (epilimnion layer) and the deeper water (hypolimnion layer) separated by a thermocline. The thermocline is identified when the water changes by more than one degree Celsius per meter. Under winter conditions, ice covers the surface water and a thermocline is formed with the colder water at the surface and the warmer water at the bottom of the lake. Lakes without thermal stratification mix from top to bottom and this mixing allows oxygen to distribute throughout the water column preventing hypolimnetic anoxia (lack of oxygen). In summer time, warmer surface water can facilitate cyanobacteria blooms at the lake surface (Wetzel, R. 2001).

The Fork Lake temperatures were recorded to a maximum depth of 10 m. A minimum temperature of 0.02 °C was observed on March 8, 2017 and maximum temperature of 23 °C was noted on July 10, 2017 and August 10, 2017 at 1 m depth. Results of temperatures observed on different dates and depth are illustrated in Figure 4. Fork Lake temperature sampling data showed uniform temperature profiles during the spring and summer. Thermal stratification was not observed on any of the summer sampling events between March 8, 2017 and August 24, 2017. Fork Lake lacked thermal stratification throughout the year.

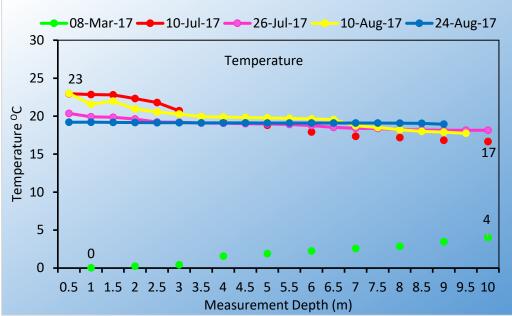


Figure 4: Temperature profile in Fork Lake – 2017

4.4 Nutrients

Excessive levels of nitrogen and phosphorus are found in many lakes across Alberta leading to excessive growth of algae and aquatic plants. Decay of aquatic vegetation causes oxygen depletion in the water column and contributes to eutrophication. Consequently, the decreased levels of oxygen can suffocate fish and other aquatic organisms. High nutrient conditions foster algal blooms and can result in the proliferation of toxin-producing blue green algae (e.g., cyanobacteria). The input of nutrients into aquatic systems can occur naturally, but large amounts of nutrients typically originate from indirect, non-point anthropogenic sources, including improperly treated sewage, residential use of fertilizers and agricultural operations.

In 2017, two types of lake water samples for analyses of nutrients were collected from Fork Lake; composite samples and Kemmerer samples (obtained from different depths using a Kemmerer device). These samples were analyzed for total nitrogen and total phosphorous.

Total Nitrogen

Total nitrogen is an essential nutrient for plants and animals; however, excessive amounts of nitrogen in lake water may lead to low levels of dissolved oxygen and negatively affect water quality and health of aquatic life within the lake. Nitrogen concentrations in the water are typically measured in three forms: ammonia, nitrates and nitrites. Total nitrogen is the sum of total Kjeldahl nitrogen (ammonia, organic and reduced nitrogen), nitrate and nitrite. Nitrogen levels in lakes are also affected by atmospheric deposition and this refers to nitrogen in the air being deposited into the water system. Nitrogen oxides (NOx) are added to atmosphere due to the burning of fossil fuels, so emissions from motor vehicles and industrial facilities can also affect nitrogen levels in aquatic environments.

Composite Samples

Composite lake water samples for analyses of total nitrogen were collected on July 10, August 10, and August 24, 2017 and the resulting concentrations ranged from 1.52 mg/L to 2.52 mg/L. The analytical results are presented in Figure 5.

Nitrogen concentrations in the composite samples collected from the lake in 2017 had an average of 2.05 mg/L of total nitrogen which exceeded the applicable regulatory guidelines. The average total nitrogen indicates that Fork Lake is Hypereutrophic (excessive productivity, nutrients, and algae growth) based on total nitrogen from composite samples.

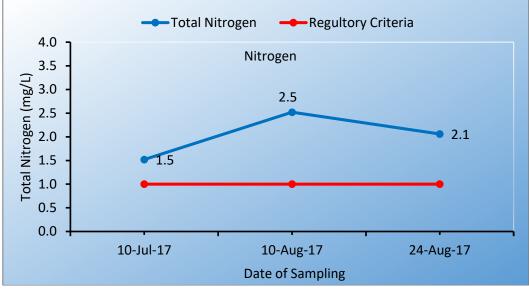


Figure 5: Total nitrogen from composite samples of Fork Lake - 2017

Kemmerer Sampling

Kemmerer water samples are collected from different depths of the lake by using a Kemmerer device which makes it possible to obtain a sample of water from specific depths. Kemmerer samples were collected on March 8, 2017 at various depths (3, 6, and 9 m) and were analyzed for total nitrogen by ALS laboratories. Total nitrogen concentrations ranged from 2.2 mg/L to 3.0 mg/L. Analytical results of total nitrogen are presented in Figure 6.

Total nitrogen concentrations in all samples from all depths exceeded the applicable regulatory guideline of 1.0 mg/L. The results from the Kemmerer sampling resulted in the same trophic state classification as the composite samples for total nitrogen which is Hypereutrophic (excessive productivity, nutrients, and algae growth) based on total phosphorus.

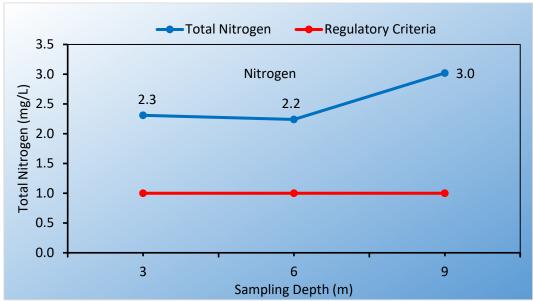


Figure 6: Total nitrogen from Kemmerer samples of Fork Lake – 2017

Total Phosphorous

Increased phosphorus concentrations are the largest cause of degradation in water quality within lakes, causing 'dead zones', toxic algal blooms, a loss of biodiversity and increased health risks for plants, animals and humans that encounter polluted lake waters. Run-off from agriculture, human sewage and industrial practices results in increased phosphorus concentrations in lake water and lake bed sediments (Wetzel, 2001). Long-term monitoring activities following the control of phosphorus sources to lakes indicates that plants and animals do not recover from the effects of excessive phosphorous for several years.

Composite Sampling

Composite lake water samples for analyses of total phosphorus were collected on July 10, August 10, and August 24, 2017 and the resulting concentrations were 0.025 mg/L, 0.046 mg/L and 0.042 mg/L of total phosphorus. These analytical results are presented in Figure 7.

Total phosphorus concentrations in the composite samples had an average of 0.038 mg/L of total phosphorus which meet the applicable regulatory guideline of 0.05 mg/L. This average total phosphorus concentration classifies Fork Lake as Eutrophic (high productivity, nutrients, and algae growth) based on total phosphorus from composite samples.

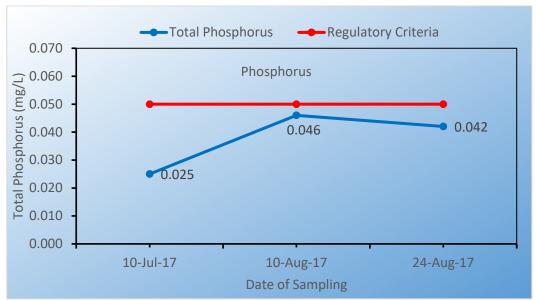
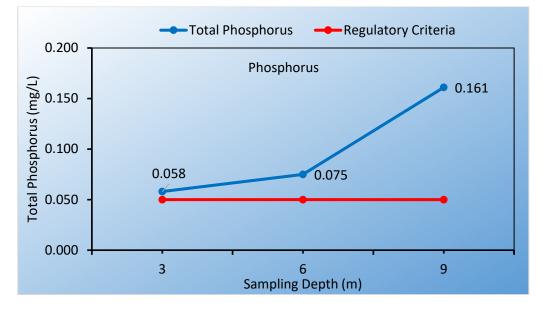



Figure 7: Total phosphorus from composite samples of Fork Lake – 2017

Kemmerer Sampling

Kemmerer water samples using Kemmerer device were collected on March 8, from depths of 3 m, 6 m, and 9 m, and were analyzed for total phosphorus by ALS laboratories. Total phosphorus concentration in lake water samples collected on March 8, 2017, at 3 m, 6 m, and 9 m depths were 0.058 mg/L, 0.075 mg/L and 0.161 mg/L, respectively. An increasing trend in total phosphorus concentrations was observed with increase in depth of the lake. The average total phosphorus concentration from Kemmerer sampling is 0.098 mg/L of total phosphorus. The results of total phosphorus concentrations for Fork Lake at different lake depths are presented in Figure 8.

Total phosphorus concentrations in all samples exceeded the applicable regulatory guideline of 0.05 mg/L. The results from the Kemmerer sampling resulted in the same trophic state classification as the composite samples for total phosphorus which is Eutrophic (excessive productivity, nutrients, and algae growth) based on total phosphorus.

Figure 8: Total phosphorus from Kemmerer samples of Fork Lake – 2017

N:P Ratio

The Redfield Ratio describes the optimal balance of total nitrogen to total phosphorous for aquatic plant growth and has an optimal value of 16:1 (Teubner and Dokulil 2002). If the ratio is lower than 16:1, phosphorus is no longer considered a limiting nutrient, and aquatic vegetation and cyanobacteria can use the dissolved and atmospheric nitrogen for growth by using the high amounts of phosphorus available in lake waters. If the ratio is higher than 16:1, it indicates that the phosphorus concentrations are occurring at levels much less than nitrogen and hence limits the growth within lakes.

Average N:P ratios in the Fork Lake were 53:1 and 26:1 for composite and Kemmerer samples, respectively. These ratios were higher than the Redfield Ratio of 16:1 indicating that total phosphorus concentration is considered low enough for phosphorous to be considered the main nutrient limiting growth in the Fork Lake.

4.5 Routine Water Chemistry

Results of routine water chemistry of samples collected from Fork Lake are presented in Table 4, Appendix A.

The average measured pH for Fork Lake was 8.58 which was consistent with the average of past years. The pH of water determines the solubility and biological availability of chemical constituents such as nutrients and heavy metals. The ability of a lake to neutralize these hydrogen ions is referred to as a buffering capacity. Any lake with a total alkalinity of more than 100 mg/L is considered to have high buffering capacity (Mitchell and Prepas 1990). The pH in Fork Lake is likely buffered against change by its high alkalinity. The high alkalinity in Alberta lakes is derived from the rich calcareous glacial till over which the lakes have formed.

4.6 Metals

Metals enter the water naturally through the weathering of rocks and soil and are generally non-toxic and in low concentrations. However, metals can also come from a wide variety of anthropogenic and non-point pollution sources including runoff from urban areas, wastewater discharge, improperly managed sewage treatment, industrial activities and agricultural runoff. The analytical results of total dissolved metals in the Kemmerer and composite water samples collected from Fork Lake are presented in Table 5.

Concentrations of all metals analyzed from the composite and Kemmerer samples taken at a depth of 6 m were generally below detection limits and/or below the applicable regulatory guidelines.

4.7 Coliforms

Coliform bacteria are indicators for sanitary conditions of water. They are members of Enterobacteriaceae family that includes *Escherichia coliform* (E. coli) which are capable of growth at 37° C (total coliforms) or 44°C - 45° C (thermotolerant coliforms). The term thermotolerant is now preferred over disease causing fecal coliform. Higher concentrations of coliform bacteria in lake water can cause gastrointestinal and upper respiratory illness on direct contact with recreational users. Coliforms enter the lake water through various means, including: sewage discharge, non-point agriculture and urban storm water runoff, wildlife (birds, muskrats) and domestic animals.

The current guidelines for E. coli and fecal coliforms advise that the geometric mean of bacteriological counts from not fewer than 5 samples of water taken over a 30 day period does not exceed 200 fecal coliforms per 100 mL of water; and no 2 consecutive samples of water have a bacteriological count in excess of 400 fecal coliforms per 100 mL of water. If any samples exceed these guidelines, the public will

be notified, warning signs will be posted, and possible water quality control actions should be implemented (Health Canada 2012).

This sampling is done through a partnership between Lac La Biche County and Alberta Health Services. The County is responsible for obtaining the samples which are then delivered to Alberta Health Services. Alberta Health Services then ensures that the analysis is completed and they are responsible for any subsequent beach closures.

Thermotolerant Coliform samples from Bennett Beach and Fork Lake North beach were collected in June, July and August 2017. Results of these samples are presented in Figure 9.

Thermotolerant coliform counts in all samples were between <10 cfu/100 mL and 190 cfu/100 mL, below the applicable guideline of 200 cfu/100 mL of thermotolerant coliforms.

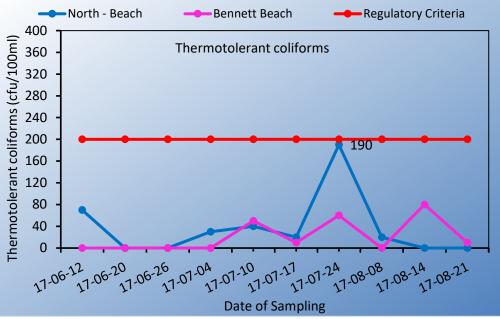


Figure 9: Thermotolerant coliform samples from beaches in Fork Lake - 2017

5 HISTORICAL TREND ANALYSIS

The objective of the historical trend analysis is to provide an overview of water quality conditions in a lake with time, and to evaluate the impact of watershed management practices on lake water quality.

Three parameters are significant in trend analyses for lake water quality: Secchi depth, total nitrogen and total phosphorus; all of which are also used for trophic classification of lakes.

5.1 Secchi Depth

Historical data shows that Secchi Depth in Fork Lake was always less than the standard Oligotrophic Secchi Depth of 4 m. Results of these samples are presented in Figure 10. A Secchi Depth of 2 m was measured in 2005 but gradually decreased to 1 m in 2017. The low Secchi depth means that the lake water has poor transparency due to suspended materials. However, the Secchi depth readings may not provide an exact measure of the water transparency due to various errors such as time of the day, sun's glare on the water, and eyesight of the observer.

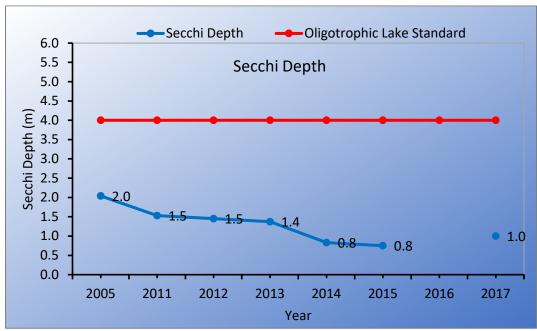


Figure 10: Historical trend for Secchi depth in Fork Lake

5.3 Total Nitrogen

Historical data shows that total nitrogen in Fork Lake ranged from 1.2 mg/L to 2.05 mg/L and consistently exceeded the regulatory guideline of 1.0 mg/L (Figure 11). Total nitrogen concentrations of 1.70 mg/L measured in 2005 decreased to 1.25 mg/L in 2011, however, a temporal increasing trend in total nitrogen concentrations was observed since after 2011. Total nitrogen concentrations have historically been classified as Hypereutrophic (excessive productivity, nutrients, and algae growth).

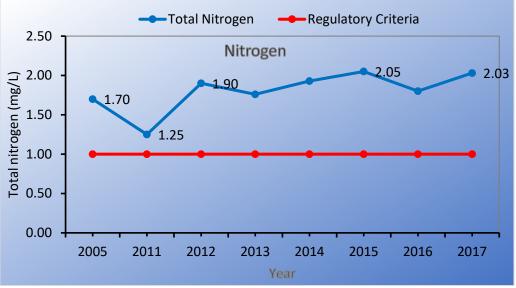


Figure 11: Historical trend of total nitrogen concentrations in in Fork Lake

5.4 Total Phosphorus

Historical data shows that total phosphorus concentrations in Fork Lake ranged from a minimum of 0.037 mg/L in 2012 to a maximum of 0.069 mg/L in 2015 as presented in Figure 12. However, total phosphorus concentrations fluctuated over time, and the values recorded in 2011, 2014, 2015, and 2016 exceeded the applicable regulatory guideline of 0.05 mg/L. No representative trend of change for total phosphorus concentrations in Fork Lake was observed. Total phosphorus concentrations have historically been classified as Eutrophic (high productivity, nutrients, and algae growth).

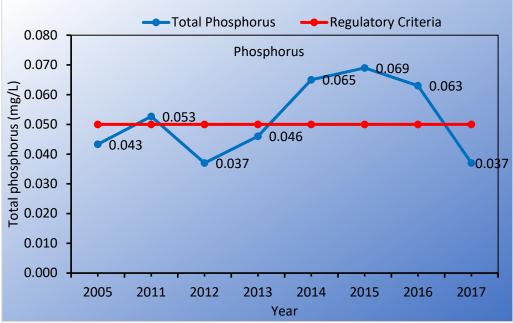


Figure 12: Historical trend of total phosphorus concentrations in Fork Lake

6 DISCUSSION

Trophic State Index (TSI) is a classification system designed to rate lakes based on the amount of biological activity they sustain. The concentrations of nutrients (nitrogen and phosphorous) are the primary determinants of TSI. Increased concentrations of nutrients tend to result in increased plant growth, followed by an increase in subsequent trophic level. Nurnberg (1996) used parameters including Secchi depth, chlorophyll, total nitrogen and total phosphorus concentrations in lake waters to determine the trophic state of the lakes, which is provided as Table 1 in Appendix A. TSI is a useful tool for evaluation and management of lake health and setting objectives including sport and recreational activities related to the lake. Trophic classification of Fork Lake based on Secchi depth and nutrients is presented in Table 2.

For the purpose of this report, the parameters used to determine the trophic state will only include Secchi depth, total nitrogen and total phosphorus. Chlorophyll will not be used to determine the trophic state. Chlorophyll is a green pigment present in all green plants and is responsible for the absorption of light to provide energy for photosynthesis. It is associated with algae growth in a waterbody and affects the trophic status of a lake. Chlorophyll concentration is measured as part of the County's monitoring program. However, the measurement can be an underestimate of algae biomass when blue-green algae are present. It is also difficult to have consistent measurements of Chlorophyll as there can be large

variances in concentrations due to anomalies such as temperature and weather conditions such as precipitation and wind. Therefore, it is difficult to report Chlorophyll concentrations and make recommendations based on the results. Based on this information, Chlorophyll is not reported in this document.

There are four classes of trophic states which include: Oligotrophic which would be the highest quality of water with low productivity, nutrients and algae; Mesotrophic which is fair quality water with some productivity, nutrients and algae; Eutrophic which is relatively poor quality water with high productivity, nutrients and algae; and Hypereutrophic which is the poorest quality water with excessive productivity, nutrients, and algae.

Fork Lake would be considered Eutrophic based on the average of the three water parameters Secchi depth, total nitrogen and total phosphorus. Mesotrophic based on Secchi depth, Hypereutrophic based on total nitrogen, and Eutrophic based on total phosphorus.

7 RECOMMENDATIONS

Envirolead recommends that Lac La Biche County continues to monitor the water quality of Fork Lake on a regular basis. Continuous monitoring will help the County to determine how the lake management strategies and policies such as the Riparian Setback Matrix Model are impacting the lake water quality, and what the net effect is on human and environmental health.

Due to the largescale oil and gas exploration and development operations across the County and in its surrounding, the likelihood of petroleum hydrocarbons entering the lake water through various means cannot be ignored. Envirolead recommends that petroleum hydrocarbons dissolved in the lake water should also be included in the monitoring program.

A strategic monitoring plan should be developed by the County to ensure that sampling is carried out in a consistent manner for all lakes that are sampled each year. This would include sampling each lake the same number of times per year with a uniform sampling procedure; and implementing a quality assurance program for both the multi-probe and water chemistry analysis to ensure that data used to evaluate the lake water quality is accurate and reliable. By maintaining consistency in sampling programs, the County will be able to monitor changes occurring in lake water quality, and hence assist the County in developing policies and management practices to ensure the optimum health of the lake.

Nutrient loading is the main source of eutrophication in Fork Lake which is degrading the water quality; leading to algae growth, foul smells and a reduction in water recreation. Therefore, action must be taken to slow down the eutrophication process and improve water quality. Best management practices would include education of the public on appropriate land use including watershed protection and waste management; restoration and protection of riparian areas (water buffers); and strengthening laws and regulations governing land use such as municipal sewer hookups and protection of environmental reserves.

8 **REFERENCES**

- Atlas of Alberta Lakes, 1990. <u>http://albertalakes.ualberta.ca/?page=home</u>, accessed September 22, 2018
- 2. Baby, J., J. S. RAJ, E. T. Biby, P. Sankarganesh, M.V. Jeevitha, S.U. Ajisha and S. S. Rajan, Toxic effect of heavy metals on aquatic environment. Int. J. Biol. Chem. Sci. 4(4): 939-952, 2010
- 3. Burns N. M. and, Nriagu, J. O., Forms of Iron and Manganese in Lake Erie Waters, Journal of the Fisheries Research Board of Canada, 1976, 33(3): 463-470, 2011
- 4. Canadian Council of Ministers of the Environment. 1999. Canadian water quality guidelines for the protection of aquatic life: Dissolved oxygen (freshwater). In: Canadian environmental quality guidelines, Canadian Council of Ministers of the Environment, Winnipeg, 1999
- 5. Canadian Council of Ministers of the Environment, Canadian Environmental Quality Guidelines, 2007
- 6. Government of Alberta, Alberta Guide to Sport Fishing Regulations, 2018
- 7. Government of Alberta, Environmental Quality Guidelines for Alberta Surface Waters, Alberta Environment and Parks, 2018
- 8. Elayse M. Hachich,* Marisa Di Bari, Ana Paula G. Christ, Cláudia C. Lamparelli, Solange S. Ramos, and Maria Inês Z. Sato; Comparison of thermotolerant coliforms and *Escherichia coli* densities in freshwater bodies, Brazilian Journal of Microbiology; 43(2): 675–681; 2012
- 9. Government of Alberta, Guide to the commercial fishing seasons, 2012
- 10. Government of Alberta, <u>http://aep.alberta.ca/fish-wildlife/default.aspx</u>, accessed September 22, 2018
- 11. Government of Alberta, Trophic state of Alberta lakes based on average total chlorophyll, 2013. <u>https://open.alberta.ca/publications/trophic-state-of-alberta-lakes-based-on-average-chlorophyll-a-concentrations</u>, accessed on September 22, 2018
- 12. Government of Alberta, Trophic state of Alberta lakes based on average total phosphorus concentrations, 2013. <u>https://open.alberta.ca/publications/trophic-state-of-alberta-lakes-based-on-average-total-phosphorus-concentrations</u>, accessed September 22, 2018
- 13. Health Canada Guidelines for Canadian Recreational Water Quality, 2012
- 14. Lac La Biche County Office, Lac La Biche East and West, Water Sampling Report, 2016
- 15. Mitchell, P.A. and E.E. Prepas (eds.), Atlas of Alberta Lakes, University of Alberta Press. (detailed information on 100 Alberta lakes: author of introduction on Water Quality and six lake chapters, co-author on nine lake chapters) p.690, 1990
- 16. Nurnberg, G. 1996. Trophic state of clear and colored, soft- and hardwater lakes with special consideration of nutrients, anoxia, phytoplankton and fish. Lake Reserv. Man. 12(4): 432-447.
- 17. Schindler, D. W. et al, The cultural eutrophication of Lac la Biche, Alberta, Canada: a paleoecological study. Can. J. Fish. Aquat. Sci. 65: 2211–2223, 2008
- 18. Teubner, K and M. T. Dukulil, Ecological stoichiometery of TN:TP:SRSi in freshwaters: nutrient ratios and seasonal shifts in phytoplankton assemblages. Arch Hydrobiol. 625-646, 2002
- 19. Thrane, J. E., D. O. Hessen, and T. Andersen 2014. The Absorption of Light in Lakes: Negative Impact of Dissolved Organic Carbon on Primary Productivity. Ecosystems 17: 1040–1052, 2014
- 20. Thurston, R. V., C. R. Rosemarie, and G. A. Vinogradov, 1981. Ammonia toxicity to fish; Effect of pH on the toxicity of the unionized ammonia species. Environ. Sci. & Technol. 15 (7): 837-840
- 21. Wetzel, R. G., Limnology: Lake and River Ecosystems, 3rd Edition; Elsevier Academic Press. 20, 2001

APPENDIX A

Table 1: Trophic status classification based on lake water parameters (Nurnberg 1996)

Trophic State	Total Phosphorus (mg/L)	Total Nitrogen (mg/L)	Secchi Depth (m)
Oligotrophic	<0.01	<0.35	>4
Mesotrophic	0.01 - 0.03	0.35 – 0.65	4 - 2
Eutrophic	0.03 - 0.10	0.65 – 1.20	2 - 1
Hypereutrophic	>0.10	>1.20	<1

Table 2: Trophic status of Fork Lake based on lake water parameters (Nurnberg 1996)

Trophic State	Secchi Depth	Total Nitrogen	Total Phosphorus	
	(m)	(mg/L)	
Oligotrophic	>4	<0.35	<0.01	
Mesotrophic	4 – 2	0.35 – 0.65	0.01-0.03	
Eutrophic	2 – 1	0.65 - 1.00	0.0310 - 0.1	
Hypereutrophic	<1	>1.2	>0.1	
Fork Lake Data	1	2.03	0.038	
Trophic State of Fork Lake	Mesotrophic	Hypereutrophic	Eutrophic	
Trophic State of Fork Lake in 2016	-	Hypereutrophic	Eutrophic	

Sampling Event	Total Nitrogen (mg/L)	Total Phosphorus (mg/L)	N:P
Composite Sampling	2.03	0.038	53:1
Kemmerer Sampling	2.50	0.098	26:1

Table 4: Routine water chemistry analysis of Fork Lake - 2017

Parameters	10-Jul-17	10-Aug-17	24-Aug-17	Criteria ¹	Criteria ²
------------	-----------	-----------	-----------	------------------------------	-----------------------

		(mg/L)								
рН	8.58	8.58 8.58 8.58								
Temperature	15.58	15.58	15.58							
Ammonia, Total (as N)	<0.050	0.055	0.205	0.197 ^{ª*}	0.149*					
Nitrate (as N)	<0.020	<0.020	<0.020	3.00 ^a	3.00					
Nitrite (as N)	<0.010	<0.010	<0.010	0.20 ²	0.20					
Nitrate and Nitrite (as N)	<0.022	<0.022	<0.050	100 ^b	NS					

* Based on average pH and temperature of 8.58 and 15.58 °C of Fork Lake in 2017

1: CCME C Guidelines, de-minimis criteria for Protection of Aquatic Life and Protection of Agricultural Water

2 - Environmental Quality Guidelines for Alberta Surface Waters 2018

a: CCME Canadian Environmental Quality Guidelines for water for the Protection of Aquatic Life

b: CCME Guidelines for Protection of Agricultural Water

 Table 5: Dissolved metals from composite and Kemmerer samples in Fork Lake - 2017

Sampling EventComposite SamplingKemmerer SamplingCriteria1Criteria1

Date of Sampling	July 10, 2017	July 26, 2017	Aug. 3, 2017 6m	Aug. 3 <i>,</i> 2017 9m		
Parameters					1	1
Hardness (as CaCO3)	253	253	253	253		
Aluminum (Al)-Total	0.0086	0.02	<0.0030	<0.0030	0.1ª	0.1
Antimony (Sb)-Total	0.00022	<0.00050	<0.00010	0.00012	NS	NS
Arsenic (As)-Total	0.00122	0.00142	0.00153	0.00165	0.005ª	0.005
Barium (Ba)-Total	0.0587	0.0637	0.074	0.0789	NS	NS
Beryllium (Be)-Total	<0.00010	<0.00050	<0.00010	<0.00010	100 ^b	NS
Boron (B)-Total	0.075	0.078	0.087	0.1	1.5ª	1.5
Cadmium (Cd)-Total	<0.000050	<0.000025	<0.000050	<0.000050	0.00034ª	0.00034
Chromium (Cr)-Total	0.00011	0.00052	<0.00010	<0.00010	NS	NS
Cobalt (Co)-Total	<0.00010	<0.00050	<0.00010	<0.00010	0.05ª	NS
Copper (Cu)-Total	0.00057	<0.0025	<0.00050	0.00057	0.0040ª	0.04
Iron (Fe)-Total	0.01	<0.050	<0.010	0.01	0.3ª	0.3
Lead (Pb)-Total	<0.000050	<0.00025	<0.000050	0.000083	0.007ª	0.007
Lithium (Li)-Total	0.0302	0.0333	0.0344	0.0393	2.5 ^b	NS
Manganese (Mn)- Total	0.0192	0.0516	0.0467	0.328	0.2 ^b	NS
Mercury (Hg)-Total	<0.000050	<0.0000050	<0.000050	<0.000050	0.000026ª	NS
Molybdenum (Mo)- Total	0.000203	<0.00025	<0.000050	0.000063	0.073ª	0.073
Nickel (Ni)-Total	<0.00050	<0.0025	<0.00050	0.00072	0.150ª	0.12
Selenium (Se)-Total	<0.000050	<0.00025	<0.000050	<0.000050	0.001ª	NS
Silver (Ag)-Total	<0.000010	<0.000050	<0.000010	<0.000010	0.00025ª	0.00025
Thallium (Tl)-Total	<0.000010	<0.000050	<0.000010	<0.000010	0.0008ª	0.0008
Tin (Sn)-Total	<0.00010	<0.00050	<0.00010	<0.00010	NS	NS
Titanium (Ti)-Total	<0.00030	<0.0015	<0.00030	<0.00030	NS	NS
Uranium (U)-Total	0.000079	0.00007	0.000078	0.00008	0.01 ^b	0.015
Vanadium (V)-Total	<0.00050	<0.0025	<0.00050	<0.00050	0.1 ^b	NS
Zinc (Zn)-Total	0.0043	<0.015	<0.0030	0.0066	0.007ª	0.03

1: CCME Canadian Environmental Quality Guidelines, de-minimis criteria for Protection of Aquatic Life and Agricultural Water

2 - Environmental Quality Guidelines for Alberta Surface Waters 2018

a: CCME Canadian Environmental Quality Guidelines for water for the Protection of Aquatic Life

b: CCME Canadian Environmental Quality Guidelines for Protection of Agricultural Water

		Year						
Parameter	2005 2011 2012 2013 2014 2015 2016 2							
рН	8.62	8.53	8.60	8.40	8.20	8.80	8.30	8.73
Secchi Depth (m)	2.04	1.53	1.45	1.38	0.83	0.75		1.00
Total Nitrogen (mg/L)	1.70	1.25	1.90	1.76	1.93	2.05	1.80	2.03
Total Phosphorus (mg/L)	0.010	0.020	0.020	0.020	0.020	0.030	0.020	0.044
Nitrate/Nitrite (mg/L)	0.01	0.05	0.10	0.09	0.41	-	0.06	0.01
Ammonia (mg/L)	0.04	< 0.05	< 0.05	< 0.05	0.07	0.02	< 0.022	< 0.036
Specific Conductivity (µS/cm)	496	522	545	537	549	479	573	493

Table 6: Historical data of routine chemistry and other parameters for Fork Lake

Dissolved Metals	2015	2016	2017	Criteria ¹	Criteria ²	
		(mg/L				
Aluminum (Al)	0.0273	0.031	0.0086	0.1ª	0.1	
Antimony (Sb)	<0.00010	<0.00010	0.00022	NS	NS	
Arsenic (As)	0.0145	0.0115	0.00122	0.005ª	0.005	
Barium (Ba)	0.0673	0.0688	0.0587	NS	NS	
Beryllium (Be)-Total	-	-	<0.00010	100 ^b	NS	
Boron (B)	0.089	0.083	0.075	1.5ª	1.5	
Cadmium (Cd)	<0.00005	<0.0000005	<0.0000050	0.00034ª	0.00034	
Chromium (Cr)	<0.0001	<0.0001	0.00011	NS	NS	
Cobalt (Co)-Total	-	-	<0.00010	0.05ª	NS	
Copper (Cu)	<0.0005	<0.0005	0.00057	0.0040ª	0.04	
Iron (Fe)	0.012	<0.010	0.01	0.3ª	0.3	
Lead (Pb)	<0.00005	<0.00005	<0.000050	0.007ª	0.007	
Lithium (Li)-Total	-	-	0.0302	2.5 ^b	NS	
Manganese (Mn)	0.0652	0.0676	0.0192	0.2 ^b	NS	
Mercury (Hg)	<0.000005	<0.000005	<0.0000050	0.000026ª	NS	
Molybdenum (Mo)-Total	-	-	0.000203	0.073ª	0.073	
Nickel (Ni)	<0.0005	<0.0005	<0.00050	0.150ª	0.12	
Selenium (Se)	<0.00005	<0.00005	<0.000050	0.001ª	NS	
Silver (Ag)	<0.00001	<0.00001	<0.000010	0.00025ª	0.00025	
Thallium (Tl)-Total	-	-	<0.000010	0.0008ª	0.0008	
Tin (Sn)-Total	-	-	<0.00010	NS	NS	
Titanium (Ti)-Total	-	-	<0.00030	NS	NS	
Uranium (U)	0.000067	0.000074	0.000079	0.01 ^b	0.015	
Vanadium (V)-Total	-	-	<0.00050	0.1 ^b	NS	
Zinc (Zn)	<0.003	<0.003	0.0043	0.007 ^a	0.03	

Table 7. Historical trend of total dissolved metals in Fork Lake

*Analysis for total dissolved metals began in 2016

1: CCME Canadian Environmental Quality Guidelines, de-minimis criteria for Protection of Aquatic Life and Protection of Agricultural Water

2 - Environmental Quality Guidelines for Alberta Surface Waters 2018

a: CCME Canadian Environmental Quality Guidelines for water for the Protection of Aquatic Life

b: CCME Canadian Environmental Quality Guidelines for Protection of Agricultural Water